Abstract

A new approach for the linearization of calibration curves in graphite furnace atomic absorption spectrometry (GFAAS) with Zeeman background correction was tested experimentally in an intermediate concentration region before rollover. The computational procedure employed the Newton method of successive approximations and was based on the theoretical model of L'vov et al. The calculations were based on three measured parameters: the rollover absorbance, Ar; the sensitivity ratio at the rollover point, R′; and the original background-corrected peak absorbances Az. This computational procedure generated corrected normalized integrated absorbance values A0,n with the slope identical to the slope of the original linear part of the calibration curve. The new computational procedure was employed for the linearization of calibration curves of chromium, copper, lead, manganese, silver, and thallium in Zeeman GFAAS under stabilized temperature platform furnace (STPF) conditions. Overall, the new computational procedure was able to extend the linear range of the calibration curves by a factor of 2–3 for the tested elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call