Abstract

In this work we study the Newton-like methods for finding efficient solutions of the vector optimization problem for a map from a finite dimensional Hilbert space X to a Banach space Y, with respect to the partial order induced by a closed, convex and pointed cone C with a nonempty interior. We present both exact and inexact versions, in which the subproblems are solved approximately, within a tolerance. Furthermore, we prove that under reasonable hypotheses, the sequence generated by our method converges to an efficient solution of this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.