Abstract

It is known that the critical condition which guarantees quadratic convergence of approximate Newton methods is an approximation of the identity condition. This requires that the composition of the numerical inversion of the Frechet derivative with the derivative itself approximate the identity to an accuracy calibrated by the residual. For example, the celebrated quadratic convergence theorem of Kantorovich can be proven when this holds, subject to regularity and stability of the derivative map. In this paper, we study what happens when this condition is not evident “a priori” but is observed “a posteriori”. Through an in-depth example involving a semilinear elliptic boundary value problem, and some general theory, we study the condition in the context of dual norms, and the effect upon convergence. We also discuss the connection to Nash iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.