Abstract
AbstractThe principal objective of the paper is to show the importance of the Hamiltonian in control theory. Instead of using the Lagrangian formulation of electromechanical or robotic systems, our work is focused on robot dynamics by its Hamiltonian. Using the iterative Newton–Euler, we generate the local Hamiltonians and the derivative of the moments at each joint of the robot manipulator. Thus, we can apply decentralized controllers at each joint. We compare and discuss the efficiency of the controllers. We show that the performance of the sliding modes controller is more robust than that of the PD or Bang–Bang controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.