Abstract

News recommendation system is designed to deal with massive news and provide personalized recommendations for users. Accurately capturing user preferences and modeling news and users is the key to news recommendation. In this paper, we propose a new framework, news recommendation system based on topic embedding and knowledge embedding (NRTK). NRTK handle news titles that users have clicked on from two perspectives to obtain news and user representation embedding :1) extracting explicit and latent topic features from news and mining users' preferences for them in historical behaviors; 2) extracting entities and propagating users' potential preferences in the knowledge graph. Experiments in a real-world dataset validate the effectiveness and efficiency of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.