Abstract

Lipid-porphyrin conjugates are considered nowadays as promising building blocks for the conception of supramolecular structures with multifunctional properties, required for efficient cancer therapy by photodynamic therapy (PDT). The synthesis of two new lipid-porphyrin conjugates coupling pheophorbide-a (Pheo-a), a photosensitizer derived from chlorophyll-a, to either chemically modified lyso-phosphatidylcholine (PhLPC) or egg lyso-sphingomyelin (PhLSM) is reported. The impact of the lipid backbone of these conjugates on their self-assembling properties, as well as on their physicochemical properties, including interfacial behavior at the air/buffer interface, fluorescence and absorption properties, thermotropic behavior, and incorporation rate in the membrane of liposomes were studied. Finally, their photodynamic activity was evaluated on esophageal squamous cell carcinoma (ESCC) and normal esophageal squamous epithelium cell lines. The liposome-like vesicles resulting from self-assembly of the pure conjugates were unstable and turned into aggregates with undefined structure within few days. However, both lipid-porphyrin conjugates could be efficiently incorporated in lipid vesicles, with higher loading rates than unconjugated Pheo-a. Interestingly, phototoxicity tests of free and liposome-incorporated lipid-porphyrin conjugates demonstrated a better selectivity in vitro to esophageal squamous cell carcinoma relative to normal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.