Abstract

Indomethacin, a known nonsteroidal anti-inflammatory drug (NSAID) induces gastric inflammation, causing degradation of the extracellular matrix by specific matrix metalloproteinases (MMPs). We investigated the antiulcer efficacy of 3-indolyl furanoids (3g and 3c, i.e., methoxy substitution at 4- and 5-positions of the indole ring, respectively), derived from indomethacin. Interestingly, 3g protected against indomethacin-induced gastropathy in vivo by inhibiting MMP-9. Our work established a chemical modification strategy for the development of safer NSAIDs. Moreover, in vitro and in silico studies confirmed that 3g inhibited MMP-9 activity with an IC50 value of 50 μM by binding to the catalytic cleft of MMP-9, leading to ulcer prevention. Pharmacokinetics was presented as the mean concentration-time profile in the rat plasma, and the extraction efficiency was greater than 70%, showing a Cmax of 104.48 μg/mL after 6.0 h (tmax) treatment with half-life and area under the curve being 7.0 h and 1273.8 h μg/mL, respectively, indicating the higher antiulcer potency of 3g.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call