Abstract
Mature naive T cells circulate through the secondary lymphoid organs in an actively enforced quiescent state. Impaired cell survival and cell functions could be found when T cells have defects in quiescence. One of the key features of T cell quiescence is low basal metabolic activity. It remains unclear at which developmental stage T cells acquire this metabolic quiescence. We compared mitochondria among CD4 single-positive (SP) T cells in the thymus, CD4+ recent thymic emigrants (RTEs), and mature naive T cells in the periphery. The results demonstrate that RTEs and naive T cells had reduced mitochondrial content and mitochondrial reactive oxygen species when compared with SP thymocytes. This downregulation of mitochondria requires T cell egress from the thymus and occurs early after young T cells enter the circulation. Autophagic clearance of mitochondria, but not mitochondria biogenesis or fission/fusion, contributes to mitochondrial downregulation in RTEs. The enhanced apoptosis signal-regulating kinase 1/MAPKs and reduced mechanistic target of rapamycin activities in RTEs relative to SP thymocytes may be involved in this mitochondrial reduction. These results indicate that the gain of metabolic quiescence is one of the important maturation processes during SP-RTE transition. Together with functional maturation, it promotes the survival and full responsiveness to activating stimuli in young T cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.