Abstract

Hydraulic fracturing (HF) in the Duvernay Formation near Fox Creek, Alberta, Canada, has produced some of the most prolific clusters of induced seismicity. In this paper, we describe newly emerging clusters of events occurring in previously quiescent (and undeveloped) areas of the Duvernay Formation. In the Duvernay East Shale Basin, an industry supplemented waveform database is examined using a variety of seismological techniques. Here, strike-slip events as large as 4.18 ML have been felt in nearby cities. Temporal relationships suggest these clusters are almost certainly (>99.7% confidence) caused by nearby HF. Spatially, these earthquakes tend to occur in the strata directly overlying the Duvernay Formation and laterally near a horizontal well. One exceptional cluster clearly delineates a 1.5 km offset between its centroid and the inducing horizontal well, raising questions about the earthquake triggering mechanism. Westward in the Duvernay, two minor clusters within the Willesden Green region appear to be tenuously related to HF completions. This study also places constraints on the structural geology of faulting occurring in the Rocky Mountain House Seismogenic Zone – a region of induced seismicity related to secondary recovery in the Strachan D-3A pool. Here, our moment tensors and double difference relocations describe thrust-slip on a fault underlying the target formation. Last, the largest event (4.27 ML) in our study area was likely natural, due to its deeper hypocentral depth (~15 km) and non-correspondence with industrial operations. Overall, the newly emerging clusters are consistent with reactivation of basement rooted faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.