Abstract

Ultrahigh-temperature (UHT) metamorphism represents an extreme crustal thermal event with peak conditions exceeding 900 °C at 7–13 kbar. In the modern-style plate tectonic system, records of the UHT metamorphism are relatively rare due to the secular cooling of Earth. In the Palu region of Western Sulawesi, we newly discovered a series of HT-UHT metamorphic rocks including amphibolite, granulite, eclogites and gneiss. Of them, two granulite samples (18CS14-2, 18CS14-4) with high garnet content (>50 mol%) are chosen for petrographic observation, phase equilibrium modelling, and zircon U-Pb dating. These rocks are characterized by a relic M1 assemblage of Grt + Ky + Bt + Rt and a M2 assemblage of Grt + Sil + Pl + Spl + Crd ± Qtz + Ilm + melt. Phase equilibrium modelling based on effective bulk compositions yields UHT conditions of 7.2–8.5 kbar/940–1080 °C (18CS14-2) and 7.0–7.3 kbar/1000–1040 °C (18CS14-4). U-Pb analysis reveals two generations of metamorphic zircon with evolving REE content that is intimately related to garnet growth and decomposition. Zircon age of 36–5.3 Ma is ascribed to syn- to post-M1 metamorphism, whereas the young zircon age of 5.1–3.8 Ma is linked to syn- and post-M2 stage. The UHT metamorphism was probably the consequence of the upwelling of asthenospheric mantle triggered by post-collisional delamination of lithosphere in the Miocene-Pliocene (ca. 5 Ma). It could represent the youngest known UHT metamorphism on Earth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call