Abstract

Precise control over the ultrasound field parameters experienced by biological samples during sonication experiments in vitro may be quite challenging. The main goal of this work was to outline an approach to construction of sonication test cells that would minimize the interaction between the test cells and ultrasound. Optimal dimensions of the test cell were determined through measurements conducted in a water sonication tank using 3D-printed test objects. The offset of local acoustic intensity variability inside the sonication test cell was set to value of ±50% of the reference value (i.e., local acoustic intensity measured at last axial maximum in the free-field condition). The cytotoxicity of several materials used for 3D printing was determined using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The sonication test cells were 3D printed from polylactic acid material, which was not toxic to the cells. Silicone membrane HT-6240, which was used to construct the bottom of the test cell, was found to reduce ultrasound energy minimally. Final ultrasound profiles inside the sonication test cells indicated the desired variability of local acoustic intensity. The cell viability in our sonication test cell was comparable to that of commercial culture plates with bottoms constructed with silicone membrane. An approach to construction of sonication test cells minimizing the interaction of the test cell and ultrasound has been outlined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call