Abstract

We have investigated the sites of microtubule (MT) assembly in neurons during axon growth by taking advantage of the relationship between the proportion of tyrosinated alpha-tubulin (tyr-tubulin) in MTs and their age. Specifically, young (newly assembled) MTs contain more tyr-tubulin than older (more long-lived) MTs. To quantify the relative proportion of tyr-tubulin in MTs, cultured rat sympathetic neurons were permeabilized under conditions that stabilize existing MTs and remove unassembled tubulin. The MTs were then double-stained with antibodies to tyr-tubulin (as a measure of the amount of tyr-tubulin in MTs) and to beta-tubulin (as a measure of total MT mass), using immunofluorescence procedures. Cells were imaged with a cooled charge-coupled device camera and the relative proportion of tyr-tubulin in the MTs was quantified by computing the ratio of the tyr-tubulin fluorescence to the beta-tubulin fluorescence using a novel application of digital image processing and analysis techniques. The amount of tyr-tubulin in the MTs was highest in the cell body and at the growth cone; peak ratios in these two regions were approximately 10-fold higher than for the axon shaft. Moving out from the cell body into the axon, the tyr-tubulin content declined over an average distance of 40 microns to reach a constant low value within the axon shaft and then rose again more distally, over an average distance of 110 microns, to reach a peak at the growth cone (average axon length = 358 microns). These observations indicate that newly assembled MTs are concentrated in the proximal and distal regions of growing axons and therefore that the cell body and growth cone are the most active sites of MT assembly dynamics in neurons that are actively extending axons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.