Abstract

The synthesis of the group IV ternary chalcogenides Zr(6)MTe(2) (M = Mn, Fe, Co, Ni, Ru, Pt) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) is reported, as are the single-crystal structures of Zr(6)FeTe(2), Zr(6)Fe(0.6)Se(2.4), and Zr(6)Fe(0.57)S(2.43). The structure of Zr(6)FeTe(2) was refined in the hexagonal space group P&sixmacr;2m (No. 189, Z = 1) with lattice parameters a = 7.7515(5) Å and c = 3.6262(6) Å, and the structures of Zr(6)Fe(0.6)Se(2.4) and Zr(6)Fe(0.57)S(2.43) were refined in the orthorhombic space group Pnnm (No. 58, Z = 4) with lattice parameters a = 12.737(2) Å, b = 15.780(2) Å, and c = 3.5809(6) Å and a = 12.519(4) Å, b = 15.436(2) Å, and c = 3.4966(6) Å, respectively. The cell parameters of Mn-, Co-, Ni-, Ru-, and Pt-containing tellurides were also determined. The Zr(6)ZTe(2) compounds are isostructural with Zr(6)CoAl(2), while Zr(6)Fe(1)(-)(x)()Q(2+)(x)() (Q = S, Se) were found to adopt a variant of the Ta(2)P-type structure. Chains of condensed M-centered, tetrakaidecahedra of zirconium constitute the basic structural unit in all these compounds. The modes of cross-linking that give rise to the Zr(6)FeTe(2) and Zr(6)Fe(1)(-)(x)()Q(2+)(x)() structures, differences among the title compounds, and the influence of chalcogen size differences are discussed. The stoichiometric nature of Zr(6)FeTe(2) and its contrast with sulfur and selenium congeners apparently result from a Te-Fe size mismatch. The importance of stabilization of both Zr(6)FeSe(2) and Zr(6)FeTe(2) compounds by polar intermetallic Zr-Fe bonding is underscored by a bonding analysis derived from electronic band structure calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.