Abstract
In this paper, the problem of diagonalizing a symmetric matrix stream (or say, time-varying matrix) is investigated. To fulfill our goal of diagonalization, two error functions are constructed. By making the error functions converge to zero with zeroing neural dynamics (ZND) design formulas, a continuous ZND model is established and its effectiveness is then substantiated by simulative results. Furthermore, a Zhang et al. discretization (ZeaD) formula with high precision is developed to discretize the continuous ZND model. Thus, a new 5-point discrete ZND (DZND) model is further proposed for diagonalization of matrix stream. Theoretical analyses prove the stability and convergence of the 5-point DZND model. In addition, simulative experiments are carried out, of which the results substantiate not only the efficacy of the proposed 5-point DZND model but also its higher computational precision as compared with the conventional Euler-type and 4-point DZND models for diagonalization of symmetric matrix stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.