Abstract

Abstract Power system decarbonization is critical for combating climate change, and handling systems uncertainties is essential for designing robust renewable transition pathways. In this study, a bottom-up data-driven multistage adaptive robust optimization (MARO) framework is proposed to address the power systems’ renewable transition under uncertainty. To illustrate the applicability of the proposed framework, a case study for New York State is presented. Machine learning techniques, including a variational algorithm for Dirichlet process mixture model, principal component analysis, and kernel density estimation, are applied for constructing data-driven uncertainty sets, which are integrated into the proposed MARO framework to systematically handle uncertainty. The results show that the total renewable electricity transition costs under uncertainty are 21%-42% higher than deterministic planning, and the costs under the data-driven uncertainty sets are 2%-17% lower than the conventional uncertainty sets. By 2035, on-land wind and offshore wind would be the major power source for the deterministic planning case and robust optimization cases, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.