Abstract

Cooling garments have gradually become one of the main ways to relieve the thermal stress of the human body. In this paper, a new type of liquid cooling garment prototype based on the principle of thermoelectric cooling is built. The human body wear experiment was carried out in a simulated high-temperature environment, and the water inlet temperature that could meet the minimum cooling requirements of the human body under different ambient temperatures and working intensities was determined. The experiment results show that exercise intensity will affect the cooling efficiency of cooling garment. The COP (coefficient of performance) of the cooling garment is 3.5, 4.1 and 4.7 respectively when the subjects were sitting still, walking and jogging. In order to meet the minimum cooling requirements of subjects performing high-intensity exercise in a high temperature environment of 40 °C, the temperature of the water inlet of the cooling garment should be kept at about 20 °C. Before and after wearing the cooling garment, the temperature in the microclimate regions decreased from 36.2 °C to 33 °C, and the relative humidity decreased from 100 % to 60 %, which proves that the cooling garment is effective in improving the thermal comfort of the human body in high temperature environment. The above experiment results provide parameter support for the intelligent regulation of liquid cooling garment in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.