Abstract

Alternative splicing has been recognized as a major mechanism for creating proteomic diversity from a limited number of genes. However, not all determinants regulating this process have been characterized. Using subviral human immunodeficiency virus (HIV) env constructs we observed an enhanced splicing of the RNA when expression was under control of the cytomegalovirus (CMV) promoter instead of the HIV long terminal repeat (LTR). We extended these observations to LTR- or CMV-driven murine leukemia proviruses, suggesting that retroviral LTRs are adapted to inefficient alternative splicing at most sites in order to maintain balanced gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call