Abstract

We present a new wave-type model of saltatory conduction in myelinated axons. Poor conductivity in the neuron cytosol limits electrical current signal velocity according to cable theory, to 1–3 m/s, whereas saltatory conduction occurs with a velocity of 100–300 m/s. We propose a wave-type mechanism for saltatory conduction in the form of the kinetics of an ionic plasmon-polariton being the hybrid of the electro-magnetic wave and of the synchronized ionic plasma oscillations in myelinated segments along an axon. The model agrees with observations and allows for description of the regulatory role of myelin. It explains also the mechanism of conduction deficiency in demyelination syndromes such as multiple sclerosis. The recently observed micro-saltatory conduction in ultrathin unmyelinated C fibers with periodic ion gate clusters is also explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.