Abstract

The main purpose of the present study is to improve the tribological performance of aqueous lubricants with the use of ecofriendly, fatty acid-derived additives. The protic ionic liquid crystal bis(2-hydroxyethyl)ammonium stearate (DES) has been added to 50:50 water+ethylene glycol (W–EG) to obtain (W–EG)+0.5%DES; (W–EG)+1%DES and (W–EG)+2%DES emulsions. The new lubricants have been studied in sapphire-AISI (American Iron and Steel Institute) 316L stainless-steel pin-on-disk sliding contacts. The addition of DES reduces the friction coefficient by up to 76% and wear rate by up to 80%, with respect to (W–EG). The best performance is found for the emulsions with the lower proportion of DES (0.5 and 1 wt.%). These results have been related to viscosity and turbidity values. Wear mechanisms have been studied by Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM/EDX) and by Raman microscopy. While W–EG shows a severe abrasive mechanism, no abrasion marks are present inside the wear track after lubrication with (W–EG)+0.5%DES, the emulsion with the lowest wear rate. After lubrication with W–EG, an increase in oxygen content is observed inside the wear track, as determined by EDX and confirmed by Raman microscopy, which shows the presence of iron oxides. The addition of DES reduces these oxidation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.