Abstract

In this article, a new experimental characterization technique for coupled transmission lines is presented. Three specific experimental test patterns (E-, F-, and G-type structures) that can individually characterize the electromagnetic coupling of two coupled lines are developed and fabricated on the same wafer using a 0.18- $\mu \text{m}$ CMOS process. Since the devised test patterns are two-port networks, well-established two-port network characterization techniques can be exploited. Transmission line model parameters (i.e., propagation constants and characteristic impedances) associated with the three two-port test patterns can be directly determined from the measured S-parameters, followed by circuit model parameters ( $R$ , $L$ , $C$ , and $G$ ) for two coupled lines. Without rigorous equipment calibration and deembedding parasitic effects, experimental characterizations for two coupled lines using four-port network S-parameter measurements may yield physically ambiguous data above 10 GHz due to the parasitic resonances, whereas the proposed technique can determine stable and accurate network parameters over a broad frequency band. To further support the validity of the proposed technique, they are compared with data using 3-D numerical calculations and low-frequency capacitance measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call