Abstract

This paper is intended to describe the SHELVIP (Stress Hardening ELastic VIscous Plastic) model, a new viscoplastic constitutive law which has been developed to incorporate the most important features of behaviour observed in tunnels excavated in severe to very severe squeezing conditions. This model couples the elastoplastic and time-dependent behaviour by using a plastic yield surface, as frequently adopted in tunnel design analysis, and the definition of a state of overstress referred to a viscoplastic yield surface. The model is formulated in all its detailed aspects. The related analytical closed-form solution for representing triaxial creep deformations is developed. Also developed is an incremental numerical solution for describing the triaxial stress–strain behaviour under constant strain rate conditions. The model is shown to fit very satisfactorily the results of creep tests on clay shales and relaxation tests on coal specimens, as recently performed for design analysis of tunnels in squeezing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.