Abstract

A general theoretical investigation on the reaction of primary amine with aldehyde was carried out by density functional theory. The calculation systems involve three kinds of primary amines (methylamine, vinylamine, and phenylamine) and three kinds of aldehydes (formaldehyde, acetaldehyde, and acrylaldehyde). The steric and electronic inductive effects on the reaction mechanism were studied. Results reveal that the nucleophilic attack of primary amine on aldehyde under neutral conditions leads to carbinolamines, rather than Schiff bases. The nucleophilic attack on the protonated aldehyde produces the protonated Schiff base. The steric hindrance of the aldehyde slows down the nucleophilic attack but allows enough time to abstract a H; consequently, the formation of the protonated Schiff base is preferred. During the carbinolamine protonation, the H(+) preferably locates on the amine nitrogen and then is abstracted by the hydroxyl oxygen over an energy barrier, leaving protonated Schiff base after timely water liberation. The formation of a prereaction potential energy well obviously softens the steric and electronic inductive effects on the active barrier for different reactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.