Abstract

IntroductionWhile epidemiological methods have grown in sophistication during the 20th century, their application in historical occupational (and environmental) health research has also led to a corresponding growth in uncertainty in the validity and reliability of the attribution of risk in the resulting studies, particularly where study periods extend back in time to the immediate postwar era (1945–70) when exposure measurements were sporadic, unsystematically collected and primitive in technique; and, more so, to the pre-WWII era (when exposure data were essentially non-existent). These uncertainties propagate with animal studies that are designed to confirm the carcinogenicity by inhalation exposure of a chemical putatively responsible for historical workplace cancers since exact exposure conditions were never well characterized. In this report, we present a weight of scientific evidence examination of the human and toxicological evidence to show that soluble nickel is not carcinogenic; and, furthermore, that the carcinogenic potencies previously assigned by regulators to sulphidic and oxidic nickel compounds for the purposes of developing occupational exposure limits have likely been overestimated.MethodsPublished, file and archival evidence covering the pertinent epidemiology, biostatistics, confounding factors, toxicology, industrial hygiene and exposure factors, and other risky exposures were examined to evaluate the soluble nickel carcinogenicity hypothesis; and the likely contribution of a competing workplace carcinogen (arsenic) on sulphidic and oxidic nickel risk estimates.FindingsSharp contrasts in available land area and topography, and consequent intensity of production and refinery process layouts, likely account for differences in nickel species exposures in the Kristiansand (KNR) and Port Colborne (PCNR) refineries. These differences indicate mixed sulphidic and oxidic nickel and arsenic exposures in KNR's historical electrolysis department that were previously overlooked in favour of only soluble nickel exposure; and the absence of comparable insoluble nickel exposures in PCNR's tankhouse, a finding that is consistent with the absence of respiratory cancer risk there. The most recent KNR evidence linking soluble nickel with lung cancer risk arose in a reconfiguration of KNR's historical exposures. But the resulting job exposure matrix lacks an objective, protocol-driven rationale that could provide a valid and reliable basis for analyzing the relationship of KNR lung cancer risk with any nickel species. Evidence of significant arsenic exposure during the processing step in the Clydach refinery's hydrometallurgy department in the 1902–1934 time period likely accounts for most of the elevated respiratory cancer risk observed at that time. An understanding of the mechanism for nickel carcinogenicity remains an elusive goal of toxicological research; as does its capacity to confirm the human health evidence on this subject with animal studies.Concluding remarksEpidemiological methods have failed to accurately identify the source(s) of observed lung cancer risk in at least one nickel refinery (KNR). This failure, together with the negative long-term animal inhalation studies on soluble nickel and other toxicological evidence, strongly suggest that the designation of soluble nickel as carcinogenic should be reconsidered, and that the true causes of historical lung cancer risk at certain nickel refineries lie in other exposures, including insoluble nickel compounds, arsenic, sulphuric acid mists and smoking.

Highlights

  • While epidemiological methods have grown in sophistication during the 20th century, their application in historical occupational health research has led to a corresponding growth in uncertainty in the validity and reliability of the attribution of risk in the resulting studies, where study periods extend back in time to the immediate postwar era (1945–70) when exposure measurements were sporadic, unsystematically collected and primitive in technique; and, more so, to the pre-WWII era

  • Both plants employed the Hybinette electrolytic process, the final step in nickel refining and source of soluble and metallic nickel exposures in their respective electrolysis departments, which carried trace level exposures to oxidic nickel but very low exposures to sulphidic nickel compounds. [Note to the reader: For complete accuracy, it is noted that a small portion of the Port Colborne Ontario (PCNR) tankhouse was devoted to electrolytic refining of sulphidic anodes starting in the mid-1950s until the Thompson refinery was commissioned in 1960

  • Sharp contrasts in the architecture, topography, industrial hygiene, intensity of use and histories of the Kristiansand Nikkelrafferingsverk refinery (KNR) and PCNR plants point to the likelihood of mixed insoluble nickel exposures, including arsenic, as the most probable cause of the respiratory cancer risk observed in KNR's electrolysis department; and their absence in the same environment at PCNR as the likely reason for the normal risk observed there

Read more

Summary

Introduction

While epidemiological methods have grown in sophistication during the 20th century, their application in historical occupational (and environmental) health research has led to a corresponding growth in uncertainty in the validity and reliability of the attribution of risk in the resulting studies, where study periods extend back in time to the immediate postwar era (1945–70) when exposure measurements were sporadic, unsystematically collected and primitive in technique; and, more so, to the pre-WWII era (when exposure data were essentially non-existent) These uncertainties propagate with animal studies that are designed to confirm the carcinogenicity by inhalation exposure of a chemical putatively responsible for historical workplace cancers since the exact historical exposure conditions were never well characterized. KNR electrolysis workers reportedly experienced higher levels of insoluble nickel exposures than did PCNR workers, especially before 1967 ([3].pp20)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call