Abstract
The Ordered Weighted Averaging (OWA) operator was introduced by R.R. Yager [34] to provide a method for aggregating inputs that lie between the max and min operators. In this article we continue to present some extensions of OWA-type aggregation operators. Several variants of the generalizations of the fuzzy-probabilistic OWA operator - FPOWA (introduced by J.M. Merigo [13,14]) are presented in the environment of fuzzy uncertainty, where different monotone measures (fuzzy measure) are used as uncertainty measures. The considered monotone measures are: possibility measure, Sugeno additive measure, monotone measure associated with Belief Structure and Choquet capacity of order two. New aggregation operators are introduced: AsFPOWA and SA-AsFPOWA. Some properties of new aggregation operators and their information measures are proved. Concrete faces of new operators are presented with respect to different monotone measures and mean operators. Concrete operators are induced by the Monotone Expectation (Choquet integral) or Fuzzy Expected Value (Sugeno integral) and the Associated Probability Class (APC) of a monotone measure. New aggregation operators belong to the Information Structure I6 (see Part I, section 3). For the illustration of new constructions of AsFPOWA and SA-AsFPOWA operators an example of a fuzzy decision-making problem regarding the political management with possibility uncertainty is considered. Several aggregation operators (“classic” and new operators) are used for the comparing of the results of decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.