Abstract
The least-mean-square-type (LMS-type) algorithms are known as simple and effective adaptation algorithms. However, the LMS-type algorithms have a trade-off between the convergence rate and steady-state performance. In this paper, we investigate a new variable step-size approach to achieve fast convergence rate and low steady-state misadjustment. By approximating the optimal step-size that minimizes the mean-square deviation, we derive variable step-sizes for both the time-domain normalized LMS (NLMS) algorithm and the transform-domain LMS (TDLMS) algorithm. The proposed variable step-sizes are simple quotient forms of the filtered versions of the quadratic error and very effective for the NLMS and TDLMS algorithms. The computer simulations are demonstrated in the framework of adaptive system modeling. Superior performance is obtained compared to the existing popular variable step-size approaches of the NLMS and TDLMS algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.