Abstract

BackgroundApplying ultrasonic imaging system during surgery requires the poring of saline, performing the measurement, and acquiring data from its display—which requires time and is highly “performer dependent,” i.e., the measure is of a subjective nature. A new ultrasonic device was recently developed that overcomes most of these drawbacks and was successfully applied during tumor-in-brain neurosurgeries. The purpose of this study was to compare the two types of US devices and demonstrate their properties.MethodsThe study was performed in the following stages: (i) an ex vivo experiment, where slices of the muscle and brain of a young porcine were laid one on top the other. Thicknesses and border depths were measured and compared, using the two types of US instruments. (ii) During human clinical neurosurgeries, tumor depth was compared by measuring it with both devices. (iii) Following the success of stages (i) and (ii), using solely the new US device, the tumor thickness was monitored while its resection.Correlation, Pearson’s coefficient, average, mean, and standard deviation were applied for statistical tests.ResultsA high correlation was obtained for the distances of tissue borders and for their respective thicknesses. Applying these ultrasonic devices during neurosurgeries, tumor depths were monitored with high similarity (87%), which was also obtained by Pearson’s correlation coefficient (0.44). The new US device, thanks to its small footprint, its remote measurement, and the capability of monitoring intraoperatively and in real-time, provides the approach to tumor’s border before its complete resection.ConclusionsThe new US device provides better accuracy than an ultrasonic imaging system; its data is objective; it enables to control the residual tumor thickness during its resection, and it is especially useful in restricted areas. These features were found of great help during a tumor-in-brain surgery and especially in the final stages of tumor’s resection.

Highlights

  • Applying ultrasonic imaging system during surgery requires the poring of saline, performing the measurement, and acquiring data from its display—which requires time and is highly “performer dependent,” i.e., the measure is of a subjective nature

  • The measurements were performed with BK Medical US imaging system and the new US device (NUD)

  • It was proved that the NUD monitors IO glioma’s residual thickness during its resection

Read more

Summary

Introduction

Applying ultrasonic imaging system during surgery requires the poring of saline, performing the measurement, and acquiring data from its display—which requires time and is highly “performer dependent,” i.e., the measure is of a subjective nature. Medical ultrasound (US) monitoring systems are known for many years due to their capability to distinguish between different soft tissues in a living human body, including the difference between a healthy and a tumor tissue This property is based on their ability to distinguish between ultrasonic (US) characteristics of each. It turns out that the dimensions of an US transducer limit its applicability in many neurosurgical cases [10] This was found as a drawback, especially during a resection process, which is performed in many cases in a restricted and confined area. In these cases, it is essential that the residual tumor thicknesses should be monitored IO and in RT. It was recognized that for a proper operation of the US system and its image analysis, specialization is essential [10], and some of these instruments are relatively expensive [1, 2, 5, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call