Abstract

We constrain f(nu) identical with Omega(nu)/Omega(m), the fractional contribution of neutrinos to the total mass density in the Universe, by comparing the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey with power spectra for models with four components: baryons, cold dark matter, massive neutrinos, and a cosmological constant. Adding constraints from independent cosmological probes we find f(nu)<0.13 (at 95% confidence) for a prior of 0.1<Omega(m)<0.5, and assuming the scalar spectral index n=1. This translates to an upper limit on the total neutrino mass m(nu,tot)<1.8 eV for "concordance" values of Omega(m) and the Hubble constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.