Abstract
We improve the previously best known upper bounds on the sizes of θ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ heta $$\\end{document}-spherical codes for every θ<θ∗≈62.997∘\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ heta <\ heta ^*\\approx 62.997^{\\circ }$$\\end{document} at least by a factor of 0.4325, in sufficiently high dimensions. Furthermore, for sphere packing densities in dimensions n≥2000\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n\\ge 2000$$\\end{document} we have an improvement at least by a factor of 0.4325+51n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0.4325+\\frac{51}{n}$$\\end{document}. Our method also breaks many non-numerical sphere packing density bounds in smaller dimensions. This is the first such improvement for each dimension since the work of Kabatyanskii and Levenshtein (Problemy Peredači Informacii 14(1):3–25, 1978) and its later improvement by Levenshtein (Dokl Akad Nauk SSSR 245(6):1299–1303, 1979) . Novelties of this paper include the analysis of triple correlations, usage of the concentration of mass in high dimensions, and the study of the spacings between the roots of Jacobi polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.