Abstract

Some new upper bounds for noncentral chi-square cumulative density function are derived from the basic symmetries of the multidimensional standard Gaussian distribution: unitary invariance, components independence in both polar and Cartesian coordinate systems. The proposed new bounds have analytically simple form compared to analogues available in the literature: they are based on combination of exponents, direct and inverse trigonometric functions, including hyperbolic ones, and the cdf of the one dimensional standard Gaussian law. These new bounds may be useful both in theory and in applications: for proving inequalities related to noncentral chi-square cumulative density function, and for bounding powers of Pearson’s chi-squared tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.