Abstract

Nature has been a source of inspiration for the development of new pharmaceutically active agents. A series of new unnatural gallotannins (GTs), derived from d-lyxose, d-ribose, l-rhamnose, d-mannose, and d-fructose have been designed and synthesized in order to study the protective and antimicrobial effects of synthetic polyphenols that are structurally related to plant-derived products. The structures of the new compounds were confirmed by various spectroscopic methods. Apart from spectral analysis, the antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and iron reducing power (FRAP) assays. Antibacterial activity of compounds was tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. For screening of antimycobacterial effect, a virulent isolate of Mycobacterium tuberculosis and two non-tuberculous mycobacteria were used. Furthermore, antibiofilm activity of structurally different GTs against S. aureus, and their ability to inhibit sortase A, were inspected. Experimental data revealed that the studied GTs are excellent antioxidants and radical-scavenging agents. The compounds exhibited only a moderate antibacterial effect against Gram-positive pathogens S. aureus and E. faecalis and were practically inactive against mycobacteria. However, they were efficient inhibitors and disruptors of S. aureus biofilms in sub-MIC concentrations, and interacted with the quorum-sensing system in Chromobacterium violaceum. Overall, these findings suggest that synthetic GTs could be considered as promising candidates for pharmacological, biomedical, consumer products, and for food industry applications.

Highlights

  • The strong contribution of the galloyl groups to these properties has been demonstrated several times, but it has been observed that the carbohydrate moiety plays an important role as well [21,51]

  • As the 2-C-(hydroxymethyl)-branched-chain aldoses have several different hydroxyl groups, it was important to choose a suitable approach for the synthesis of their galloyl-esters

  • Our results demonstrate that GTs have sufficient inhibitory effect against

Read more

Summary

Introduction

Tannins are a large sub-class of polyphenolic compounds ubiquitously present in plants. They are found in a variety of species, playing roles in the plant’s natural defence system against environmental stressors and microbial infections [1,2,3]. Natural tannins are widely studied for their prophylactic and therapeutic potential [4,5]. Gallotannins (GTs) from various species have been extensively studied as they exhibit multiple biological activities ranging from antioxidant, radical scavenging, antimicrobial, anti-inflammatory, and immune-modulatory to anticancer effects [2,6,7,8,9]. Numerous plant polyphenols have exhibited strong antibacterial and antibiofilm activity against staphylococci [10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call