Abstract

The new understanding for the hydration mechanism of cement has been achieved based on the noncontact electrical resistivity measurement. The cement hydration process is divided into dissolution, dynamic balance, setting, hardening, and hardening deceleration stages according to the characteristic points on the electrical resistivity development curve p(t)-t and the differential curve dp(t)/dt-t. The microstructure analysis corresponding to each hydration stage is conducted with scanning electron microscope, x-ray diffraction, differential thermal analysis, and Fourier transform infrared spectroscopy techniques. This study provides the theoretical foundation for understanding the relationship between setting behavior, hardening properties, and resistivity development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.