Abstract
The flow field of a 2 in. hydrocyclone is shown to be significantly asymmetric without precession, through both computational fluid dynamics (CFD) and experimental observation. Hence the application of full three-dimensional modelling is demonstrated to be essential. Further, CFD predicts that the axial pressure is not below atmospheric prior to development of the air core and that such development is not pressure driven. In fact, initial insight into a cause of instability of the air-core is identified from the CFD and supported through experimental observation. The predictions use the second-order differential-stress turbulence model which has previously been identified to represent a minimum model. Lastly, the inclusion of full three-dimensional modelling and high-order turbulence modelling leads to a new understanding of particle-separation classification within the hydrocyclone, including a significant stochastic component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.