Abstract

Crystallization behavior of conductive composite has a great effect on the formation of conductive network. But very few studies have exposited, specially on the micro level, the evolution of conductive network during the crystallization of matrix. In this study, the conductive network was found to be destroyed by crystallization behavior of isotactic polypropylene (iPP) matrix, and the carbon black (CB) particles were rejected to the amorphous region or the inter-lamellar of spherulite. By comparison, the low-structure carbon black (LCB) filled system was more sensitive to the crystallization of matrix than the high-structure carbon black (HCB) filled system because of the morphology and interaction force of the CB primary aggregate. A secondary increase in volume resistivity during terminal crystallization was observed in iPP/LCB composite when it isothermally crystallized at a certain temperature. In that case, an analysis of crystallization kinetics of composites through a modified Lauritzen-Hoffman model indicated that the transition from regime I→II in the isothermal crystallization process of iPP matrix showed significant influence on the network formation of LCB particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call