Abstract

Along with the advancement in miniaturizing of mobile devices, typified by smart phones and tablet PCs, the semiconductor PKG substrate installed in these devices is demanded to be thinner and higher in density. As one of the most innovative solutions, the PoP (package on package) technology, which has the three-dimensional construction, has been expanding rapidly in recent years. However, the thinner PKG substrate tends to warp at the assembly process and cause the decrease in the connection reliability. Therefore ultra low CTE (coefficient of thermal expansion) materials have been needed as a key solution for the reduction of the warpage for thinner PKG substrates. Recently, we have developed new ultra low CTE material named E-770G for next-generation semiconductor PKG substrate, applying new resin systems, featuring low shrinkage and low residual stress. In particular, E-770G has achieved ultra low CTE (X) of 1.8 ppm/°C which leads to significant reduction of the warpage. Furthermore, it has low dissipation factor at high frequencies (Df: 0.005 at 1 GHz). So it's also applicable to high speed PKG applications. Confirming the warpage property, we evaluated the warpage behavior of thinner PKG substrate before/after assembly process. E-770G showed the much lower warpage than the conventional ultra low CTE material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call