Abstract

In this paper, we introduce the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomials, their numbers, and their relationship with the Riemann zeta function. We also derive the Apostol-type generalizations to obtain some of their algebraic and differential properties. We introduce generalized $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomial Pascal-type matrix. We deduce some product formulas related to this matrix. Furthermore, we establish some explicit expressions for the $U$-Bernoulli, $U$-Euler, and $U$-Genocchi polynomial matrices, which involves the generalized Pascal matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.