Abstract

The wide class of 3-D autonomous systems of quadratic differential equations, in each of which either there is a couple of coexisting limit cycles or there is a couple of coexisting chaotic attractors, is found. In the second case the couple consists of either Lorentz-type attractor and another attractor of a new type or two Lorentz-type attractors. It is shown that the chaotic behavior of any system of the indicated class can be described by the Ricker discrete population model: z i+1 = z i exp( r − z i ), r > 0, z i > 0, i = 0, 1, … . The values of parameters, at which in the 3-D system appears either the couple of limit cycles or the couple of chaotic attractors, or only one limit cycle, or only one sphere-shaped chaotic attractor, are indicated. Examples are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.