Abstract

ABSTRACTConventional superlattices are formed with repeating a basic period consisting of a heterojunction between two materials. A new type of superlattice are formed by replacing the heterojunction between adjacent semiconductors with semiconductor layers separated by adsorbed species such as oxygen atoms; and CO, molecules, etc. This new type of superlattice, SAS, semiconductor-atomic-superlattice, fabricated epitaxially, enriches the present class of heterojunction superlattices and quantum wells for quantum devices. The Si growth beyond the adsorbed monolayer of oxygen is epitaxial with fairly low defect density. At present, such a structure shows stable electroluminescence and insulating behavior, useful for optoelectronic and SOI (silicon-on-insulator) applications. SAS may form the basis of future all silicon ‘superchip’ with both electrons and photons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call