Abstract

Two new complexes, [Ru(tpy)(qdppz)](PF6)2 (1; qdppz = 2-(quinolin-8-yl)dipyrido[3,2-a:2',3'-c]phenazine, tpy = 2,2':6',2″-terpyridine) and [Ru(qdppz)2](PF6)2 (2), were investigated for their potential use as phototherapeutic agents through their ability to photosensitize the production of singlet oxygen, 1O2, upon irradiation with visible light. The complexes exhibit strong Ru(dπ) → qdppz(π*) metal-to-ligand charge transfer (MLCT) absorption with maxima at 485 and 495 nm for 1 and 2 in acetone, respectively, red-shifted from the Ru(dπ) → tpy(π*) absorption at 470 nm observed for [Ru(tpy)2]2+ (3) in the same solvent. Complexes 1 and 3 are not luminescent at room temperature, but 3MLCT emission is observed for 2 with maximum at 690 nm (λexc = 480 nm) in acetone. The lifetimes of the 3MLCT states of 1 and 2 were measured using transient absorption spectroscopy to be ∼9 and 310 ns in methanol, respectively, at room temperature (λexc = 490 nm). The bite angle of the qdppz ligand is closer to octahedral geometry than that of tpy, resulting in the longer lifetime of 2 as compared to those of 1 and 3. Arrhenius treatment of the temperature dependence of the luminescence results in similar activation energies, Ea, from the 3MLCT to the 3LF (ligand-field) state for the two complexes, 2520 cm-1 in 1 and 2400 cm-1 in 2. However, the pre-exponential factors differ by approximately two orders of magnitude, 2.3 × 1013 s-1 for 1 and 1.4 × 1011 s-1 for 2, which, together with differences in the Huang-Rhys factors, lead to markedly different 3MLCT lifetimes. Although both 1 and 2 intercalate between the DNA bases, only 2 is able to photocleave DNA owing to its 1O2 production upon irradiation with ΦΔ = 0.69. The present work highlights the profound effect of the ligand bite angle on the electronic structure, providing guidelines for extending the lifetime of 3MLCT Ru(II) complexes with tridentate ligands, a desired property for a number of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.