Abstract

Here we will give a perspective on new possible interplays between machine learning and quantum physics, including also practical cases and applications. We will explore the ways in which machine learning could benefit from new quantum technologies and algorithms to find new ways to speed up their computations by breakthroughs in physical hardware, as well as to improve existing models or devise new learning schemes in the quantum domain. Moreover, there are lots of experiments in quantum physics that do generate incredible amounts of data and machine learning would be a great tool to analyze those and make predictions, or even control the experiment itself. On top of that, data visualization techniques and other schemes borrowed from machine learning can be of great use to theoreticians to have better intuition on the structure of complex manifolds or to make predictions on theoretical models. This new research field, named as quantum machine learning, is very rapidly growing since it is expected to provide huge advantages over its classical counterpart and deeper investigations are timely needed since they can be already tested on the already commercially available quantum machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.