Abstract

Information retrieval from textual data focuses on the construction of vocabularies that contain weighted term tuples. Such vocabularies can then be exploited by various text analysis algorithms to extract new knowledge, e.g., top-k keywords, top-k documents, etc. Top-k keywords are casually used for various purposes, are often computed on-the-fly, and thus must be efficiently computed. To compare competing weighting schemes and database implementations, benchmarking is customary. To the best of our knowledge, no benchmark currently addresses these problems. Hence, in this paper, we present a top-k keywords benchmark, T${}^2$K${}^2$, which features a real tweet dataset and queries with various complexities and selectivities. T${}^2$K${}^2$ helps evaluate weighting schemes and database implementations in terms of computing performance. To illustrate T${}^2$K${}^2$'s relevance and genericity, we successfully performed tests on the TF-IDF and Okapi BM25 weighting schemes, on one hand, and on different relational (Oracle, PostgreSQL) and document-oriented (MongoDB) database implementations, on the other hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.