Abstract

A new approach to determining breakup amplitudes in few-body systems in the context of a Faddeev formalism based on lattice discretization of a continuum is described. Due to such discretization and use of finite-dimensional representations for all operators in the kernels of integral equations, breakup in few-body systems is interpreted as a partial case of multi-channel scattering and corresponds to transitions between the states of the discretized continuum of an asymptotic channel Hamiltonian. The case study is based on amplitudes of three-nucleon breakup n + d → n + n + p with semi-realistic NN interaction potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.