Abstract

Axisymmetric tomography is used to extract quantitative information from line-of-sight measurements of gas flow and combustion fields. For instance, background-oriented schlieren (BOS) measurements are typically inverted by tomographic reconstruction to estimate the density field of a high-speed or high-temperature flow. Conventional reconstruction algorithms are based on the inverse Abel transform, which assumes that rays are parallel throughout the target object. However, camera rays are not parallel, and this discrepancy can result in significant errors in many practical imaging scenarios. We present a generalization of the Abel transform for use in tomographic reconstruction of light-ray deflections through an axisymmetric target. The new transform models the exact path of camera rays instead of assuming parallel paths, thereby improving the accuracy of estimates. We demonstrate our approach with a simulated BOS scenario in which we reconstruct noisy synthetic deflection data across a range of camera positions. Results are compared to state-of-the-art Abel-based algorithms. Reconstructions computed using the new transform are consistently more stable and accurate than conventional reconstructions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.