Abstract

We address the problem of the high-frequency correction of water vapour fluxes measured by eddy covariance with a closed-path infrared gas analyser (IRGA). Different transfer functions are compared and evaluated at a forested (Vielsalm, Belgium) and an agricultural (Lonzée, Belgium) site. Classical functions, usually applied to correct CO2 fluxes (Gaussian, Lorentzian), are found to be unsuited to water vapour cospectral corrections, being characterised by too sharp a decrease at high frequency. Two other functions characterised by a lower decreasing slope are found to better fit experimental transfer functions. They were calibrated and validated on experimental transfer functions and their dependency on air humidity is parameterised. On this basis, new correction coefficients are estimated. The coefficients are found to be larger than those based on the classical functions, even when the dependency of the latter on air humidity is taken into account. The difference amounts to 10% at the forested site and to 5% larger at the crop site. The study highlights the necessity of characterising the water transfer function shape and taking it into account in the correction factor at each site equipped with a closed path IRGA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call