Abstract

Both theoretical and experimental studies of topological phases in non-Hermitian systems have made a remarkable progress in the last few years of research. In this article, we review the key concepts pertaining to topological phases in non-Hermitian Hamiltonians with relevant examples and realistic model setups. Discussions are devoted to both the adaptations of topological invariants from Hermitian to non-Hermitian systems, as well as origins of new topological invariants in the latter setup. Unique properties such as exceptional points and complex energy landscapes lead to new topological invariants including winding number/vorticity defined solely in the complex energy plane, and half-integer winding/Chern numbers. New forms of Kramers degeneracy appear here rendering distinct topological invariants. Modifications of adiabatic theory, time-evolution operator, biorthogonal bulk-boundary correspondence lead to unique features such as topological displacement of particles, ‘skin-effect’, and edge-selective attenuated and amplified topological polarizations without chiral symmetry. Extension and realization of topological ideas in photonic systems are mentioned. We conclude with discussions on relevant future directions, and highlight potential applications of some of these unique topological features of the non-Hermitian Hamiltonians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.