Abstract

Fiber-optic probes can exploit a favorable excitation radiation distribution within the sample that allows the use of higher laser power levels which, in turn, can yield a higher signal-to-noise ratio (SNR) for a given experiment without increasing the risk of analyte photo-damage. We have developed specialized fiber-optic probes for ultraviolet resonance Raman spectroscopy (UVRRS) that offer several advantages over conventional excitation/collection methods used for UVRRS. These probes are ideally suited for UVRRS studies involving biopolymers and small bio-molecules, in both native (e.g. physiological) and non-native (e.g. anoxic) solution environments. We have also developed novel probes based on hollow-core photonic band-gap fibers that virtually eliminate the generation of silica Raman scattering within the excitation fiber which often limits the utility of fiber-optic Raman probes in turbid media or near surfaces. These probes may offer advantages for some biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.