Abstract
We prove three new theta function identities for the continued fraction H(q) defined by $$\begin{aligned} H(q):=q^{1/8}-\frac{q^{7/8}}{1-q}_{+}\frac{q^2}{1+q^2}_{-}\frac{q^3}{1-q^3}_{+}\frac{q^4}{1+q^4}_{- \cdots }, \vert q\vert <1. \end{aligned}$$ The theta-function identities are then used to prove integral representations for the continued fraction H(q). We also prove general theorems and reciprocity formulas for the explicit evaluation of the continued fraction H(q). The results are analogous to those of the famous Rogers-Ramanujan continued fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.