Abstract
ObjectivesThe purpose of the international multicenter prospective single arm clinical trial was to evaluate restorative neurostimulation eliciting episodic contraction of the lumbar multifidus for treatment of chronic mechanical low back pain (CMLBP) in patients who have failed conventional therapy and are not candidates for surgery or spinal cord stimulation (SCS).Materials and MethodsFifty‐three subjects were implanted with a neurostimulator (ReActiv8, Mainstay Medical Limited, Dublin, Ireland). Leads were positioned bilaterally with electrodes close to the medial branch of the L2 dorsal ramus nerve. The primary outcome measure was low back pain evaluated on a 10‐Point Numerical Rating Scale (NRS). Responders were defined as subjects with an improvement of at least the Minimal Clinically Important Difference (MCID) of ≥2‐point in low back pain NRS without a clinically meaningful increase in LBP medications at 90 days. Secondary outcome measures included Oswestry Disability Index (ODI) and Quality of Life (QoL; EQ‐5D).ResultsFor 53 subjects with an average duration of CLBP of 14 years and average NRS of 7 and for whom no other therapies had provided satisfactory pain relief, the responder rate was 58%. The percentage of subjects at 90 days, six months, and one year with ≥MCID improvement in single day NRS was 63%, 61%, and 57%, respectively. Percentage of subjects with ≥MCID improvement in ODI was 52%, 57%, and 60% while those with ≥MCID improvement in EQ‐5D was 88%, 82%, and 81%. There were no unanticipated adverse events (AEs) or serious AEs related to the device, procedure, or therapy. The initial surgical approach led to a risk of lead fracture, which was mitigated by a modification to the surgical approach.ConclusionsElectrical stimulation to elicit episodic lumbar multifidus contraction is a new treatment option for CMLBP. Results demonstrate clinically important, statistically significant, and lasting improvement in pain, disability, and QoL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Neuromodulation: Technology at the Neural Interface
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.