Abstract

Based on the Fan—Hu's formalism, i.e., the tomogram of two-mode quantum states can be considered as the module square of the states' wave function in the intermediate representation, which is just the eigenvector of the Fresnel quadrature phase, we derive a new theorem for calculating the quantum tomogram of two-mode density operators, i.e., the tomogram of a two-mode density operator is equal to the marginal integration of the classical Weyl correspondence function of F2†ρF2, where F2 is the two-mode Fresnel operator. An application of the theorem in evaluating the tomogram of an optical chaotic field is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.