Abstract

This paper presents effective thermal conductivity measurements of alumina/water and copper oxide/water nanofluids. The effects of particle volume fraction, temperature and particle size were investigated. Readings at ambient temperature as well as over a relatively large temperature range were made for various particle volume fractions up to 9%. Results clearly show the predicted overall effect of an increase in the effective thermal conductivity with an increase in particle volume fraction and with a decrease in particle size. Furthermore, the relative increase in thermal conductivity was found to be more important at higher temperatures. Obtained results compare favorably with certain data sets and theoretical models found in current literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call