Abstract
Reliable estimates of abundance are critical in effectively managing threatened species, but the feasibility of integrating data from wildlife surveys completed using advanced technologies such as remotely piloted aircraft systems (RPAS) and machine learning into abundance estimation methods such as N‐mixture modeling is largely unknown due to the unique sources of detection errors associated with these technologies.We evaluated two modeling approaches for estimating the abundance of koalas detected automatically in RPAS imagery: (a) a generalized N‐mixture model and (b) a modified Horvitz–Thompson (H‐T) estimator method combining generalized linear models and generalized additive models for overall probability of detection, false detection, and duplicate detection. The final estimates from each model were compared to the true number of koalas present as determined by telemetry‐assisted ground surveys.The modified H‐T estimator approach performed best, with the true count of koalas captured within the 95% confidence intervals around the abundance estimates in all 4 surveys in the testing dataset (n = 138 detected objects), a particularly strong result given the difficulty in attaining accuracy found with previous methods.The results suggested that N‐mixture models in their current form may not be the most appropriate approach to estimating the abundance of wildlife detected in RPAS surveys with automated detection, and accurate estimates could be made with approaches that account for spurious detections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.